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Searching for Genotype-Phenotype Structure:
Using Hierarchical Log-Linear Models in Crohn Disease

Juliet M. Chapman,1 Clive M. Onnie,2 Natalie J. Prescott,2 Sheila A. Fisher,2 John C. Mansfield,3

Christopher G. Mathew,2 Cathryn M. Lewis,2 Claudio J. Verzilli,1 and John C. Whittaker1,*

There has been considerable recent success in the detection of gene-disease associations. We consider here the development of tools that

facilitate the more detailed characterization of the effect of a genetic variant on disease. We replace the simplistic classification of indi-

viduals according to a single binary disease indicator with classification according to a number of subphenotypes. This more accurately

reflects the underlying biological complexity of the disease process, but it poses additional analytical difficulties. Notably, the subphe-

notypes that make up a particular disease are typically highly associated, and it becomes difficult to distinguish which genes might be

causing which subphenotypes. Such problems arise in many complex diseases. Here, we concentrate on an application to Crohn disease

(CD). We consider this problem as one of model selection based upon log-linear models, fitted in a Bayesian framework via reversible-

jump Metropolis-Hastings approach. We evaluate the performance of our suggested approach with a simple simulation study and then

apply the method to a real data example in CD, revealing a sparse disease structure. Most notably, the associated NOD2.908G/R muta-

tion appears to be directly related to more severe disease behaviors, whereas the other two associated NOD2 variants, 1007L/FS and

702R/W, are more generally related to disease in the small bowel (ileum and jejenum). The ATG16L1.300T/A variant appears to

be directly associated with only disease of the small bowel.
Introduction

Many diseases are phenotypically complex, being divided

into a number of possibly overlapping disease classes or

subsets. We refer to these subsets as ‘‘subphenotypes’’ of

the overall phenotype. We consider below the example

of Crohn disease (CD; inflammatory bowel disease [MIM

266600]), which has a number of clinical types or behav-

iors and can also occur at a number of different locations.

Treatment of disease as a single affected or unaffected cate-

gorization ignores this complexity, and though this is

reasonable in the first phase of discovery of genetic associ-

ations, it is important in subsequent studies to advance our

understanding of how associated genes are related to

particular subphenotypes of the overall disease and how

these subphenotypes are related to one another.

The main problem in analysis is that subphenotypes of

a particular disease are very often highly associated with

one another, so that an individual with one subphenotype

is much more likely to have another subphenotype,

compared to the population as a whole. This means that it

can be particularly difficult to localize which gene is causing

which subphenotype by the usual univariate approaches,

because a gene causing an effect on one phenotype can

appear to be having an effect on other correlated pheno-

types as well.

Our aim is to deduce which genes are directly related to

which subphenotypes and which subphenotypes are

directly influencing one another. In order to do this, we

need to define both direct and indirect associations. An asso-

ciation between two variables is indirect if the relationship is
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entirely mediated (or confounded) by the effect of other vari-

ables. A direct association is therefore one that is not entirely

influenced (or confounded) by another variable and one

that, given the data, represents some true direct relation-

ship between two (or more) variables. Notice that this is

equivalent to the concepts of conditional independence

and dependence in the literature on undirected graphical

models: two variables (or nodes) in a graph are dependent

if directly linked by an edge or are conditionally indepen-

dent if other nodes are present on all paths between them.

Within this paper, we suggest modeling the data jointly

by using a Poisson log-linear model,1,2 which defines

a model for the cell counts of a contingency table. Within

the following section, we explain briefly how this model

can be defined in terms of a series of interaction parameters

that equate to direct relationships between variables. We

can infer which direct relationships are important or unim-

portant by determining which interaction parameters are

necessary and which can be dropped from the model.

Notice that not all log-linear models can be represented as

an undirected graph; in particular, a graph corresponding

to a model containing only first-order interactions between,

say, three variables may be represented as a complete clique,

which would wrongly imply the presence of interactions of

higher order (three-way in the example here).3

Although most multifactorial diseases have moderate

numbers of subphenotypes and known associations are

relatively rare, the model spaces we expect to encounter

are huge because there are very many possible interactions

(one for each cell of the contingency table, in fact) and,

therefore, there are even more possible models. For this
1Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; 2Department of Medical

and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London SE1 9RT, UK; 3Faculty of Medical Sciences, University of New-

castle, Newcastle upon Tyne NE1 3BZ, UK

*Correspondence: john.whittaker@lshtm.ac.uk

DOI 10.1016/j.ajhg.2008.12.015. ª2009 by The American Society of Human Genetics. All rights reserved.
y 13, 2009

mailto:john.whittaker@lshtm.ac.uk


reason, we focus upon a Bayesian-model averaging scheme.

This not only allows us to search the model space more effi-

ciently, but it also means that we are able to include prior

information that downweights models with many high

order interaction terms, in order to prevent overfitting.

Within the Material and Methods section and the

Appendix, we give details of the Poisson log-linear model1

and the reversible-jump Metropolis-Hastings algorithm

(RJMH)4 that we implement. Then, we investigate the effi-

ciency of this approach, compared to usual univariate anal-

yses, through simulations and then apply this method to an

example in which we examine the relationships between

CD subphenotypes and a number of well-known associated

loci. Our simulations show that the RJMH approach can

distinguish well between direct and indirect associations

and, thus, has advantages over the usual univariate anal-

ysis. The application to CD helps to clarify which genes

are directly associated to which subphenotypes.

Material and Methods

The Model: Poisson Log-Linear Model
Our aim is to model all variables, i.e., genotypes and subpheno-

types, within a single model; therefore, there is no need for a nota-

tional distinction between genotypes and subphenotypes. If we

assume that we have G genotypes, X1, ., XG, and S subphenotypes,

Y1, ., YS, we can pool these into one set of p ¼ (G þ S) variables,

Z1, ., ZP, in which the first G variables are genotypes and the last

S variables are subphenotypes. We say that the pth variable has

Lp levels (for p ¼ 1, ., P), and for ease of notation, we label these

levels from 0 to (Lp � 1). A genotype may, for example, have L ¼ 3

different levels, labeled as 0, 1, 2 (we do not assume Hardy-Wein-

berg equilibrium).

The data can be displayed within a P-dimensional contingency

table, with each dimension corresponding to a different variable.

The number of cells within this table is equal to I, the product of

the number of levels across all variables (I ¼
QP

p¼1 Lp). Each cell

corresponds to a unique realization of (Z1, .., ZP), and we can

define cell i as (z1i, ., zPi).

Our log-linear model assumes that for cell i in 1:I, the observed

cell counts ni have a Poisson distribution with mean mi, and that

the log of expected cell counts, log(mi), is given by a linear model

including the baseline parameter, b0, the main effects of each of the

variables, and interaction parameters of various order. The total

number of possible parameters is always equal to the number of

cells in the contingency table (I).

By dropping parameters from the saturated model, which

contains all possible interaction parameters, we can decide which

interaction parameters are important—that is, which have large

posterior probabilities associated to them—for modeling the

data. Those interaction parameters that are important within our

model can inform us about likely direct (and indirect) associations.

Two variables are deemed to be directly associated only if there

exists at least one parameter including the two variables that is

judged to be important. Two variables are indirectly linked if the

set of important parameters include a chain of overlapping direct

relationships relating the two variables.

To illustrate this, consider a data set with three binary variables,

each with just two levels; 0 and 1. The contingency table has 2 3 2 3

2 ¼ 8 cells, and the saturated model is
The America
logðmiÞ ¼ b0 þ b1z1i þ b2z2i þ b3z3i þ b12z1iz2i þ b13z1iz3i þ b23z2iz3i

þ b123z1iz2iz3i,

in which b0 is the baseline parameter; b1, b2, and b3 are the main

effects of variables 1, 2, and 3; b12, b13, and b23 are the pairwise inter-

actions between variables (1 and 2), (1 and 3), and (2 and 3); and

b123 is the three-way interaction between variables (1, 2, and 3).

Suppose we search across the set of all models and find evidence

that the parameters {b0, b1, b2, b3, b12, b23} are nonzero but that

no other parameters are needed for adequate modeling of the

data. The first pairwise interaction parameter, b12, tells us that vari-

ables 1 and 2 are likely to be directly associated, and b23 tells us that

variables 2 and 3 are directly associated. Because there is no param-

eter containing both 1 and 3, we know that these variables are not

directly associated. However, they are indirectly associated, because

variable 1 is directly associated with variable 2 and variable 2 is

directly associated with variable 3.

Therefore, determination of which models are the most probable

tells us about direct and indirect relationships between genotypes

andsubphenotypes,aswellasdirect genotype-genotypeassociations

and phenotype-phenotype associations. Given the complicated

nature of the models considered, we implement a reversible-jump

Metropolis-Hastings algorithm to search across the model space.

In fact, the algorithm that we consider is restricted to a subclass

of log-linear models known as the set of hierarchical models. These

are models that contain only parameters for which all implied

parameters are also included in the model. Each parameter relates

to an interaction between particular levels of one or more variables

and, as such, is defined by these variable levels. All subparameters

of this parameter are those parameters that are defined by a subset

of these variable levels. For example, the subparameters of b12,

above, are b1, b2, and b0. This means that b12 can only be included

in a hierarchical model if these three parameters are also included

within the model. The search algorithm is described below, and in

further detail within the Appendix.

Search for Important Parameters: Reversible-Jump

Metropolis-Hastings
Even with moderate numbers of variables, the space of all possible

models is very large. Moreover, many of these models may have

similar likelihoods. Hence, choice of a single ‘‘best’’ model is likely

to be highly unstable, and model averaging across sampled models

is preferable.5 We adopt a Bayesian approach, which we now briefly

describe. Additional details are given in the Appendix.

Denote a model by m, the corresponding set of parameters by b,

and the relevant set of variables by Z. We wish to calculate the

probability of the model and parameters, given the data, that is

the posterior probability of the model and parameters P(m, bjZ) ¼
const3L(Z; m, b) P(m, b), in which L(Z;m, b) is the likelihood of

the data given the parameter values b and the model m and

P(m, b) is the joint prior of m and b. This prior distribution defines

our prior beliefs about the model and its parameters. An additional

benefit of the Bayesian approach is that we can include as prior

information our belief that complex models with many complex,

high-level interactions are unlikely, which reduces the problem of

overfitting.

We use RJMH to approximate the required posterior distribution

by sampling from it. The RJMH sampling scheme starts at an

initial model and set of parameter values, m(0) and b(0). To sample

the next model and set of parameters, m(1) and b(1), we propose

a move from the current state to another model and/or set of
n Journal of Human Genetics 84, 178–187, February 13, 2009 179



parameter values, m* and b*, using a proposal function q(m*, b*jm,

b). We then accept these proposed values as the next sample with

probability equal to the Metropolis-Hastings ratio:

MHR ¼ LðZ; m�, b�ÞPðm�, b�Þ
LðZ; m, bÞPðm, bÞ 3

qðm, b jm�, b�Þ
qðm�, b� jm, bÞ:

If this new set of values is accepted, the proposed set is accepted

as m(1) and b (1). Otherwise, the sample value remains equal to the

current sample value, i.e., m(1) ¼ m(0) and b (1) ¼ b (0). It can be

shown that this produces a sequence of samples that converge

to the required posterior distribution.4,6 More details about the

scheme used are given in the Appendix.

We need to choose a prior distribution for both the parameter

values and likely model distribution. As in the research by Della-

portas and Forster,7 we choose independent normal priors for

the values of each parameter included in the model, each with

zero mean and precision 1/t2 ¼ 0.001. In terms of the model prior,

we expect sparse models with lower-order interaction parameters,

with higher-order interactions rarely included. Therefore, we

assign all parameters of a given size (1 to P) equal prior probabili-

ties of being included in the model and allow this probability to

decrease rapidly as the size of the interactions decreases, making

higher-order terms less likely. The prior for a particular model is,

then, formed as the product of these parameter-inclusion prior

probabilities, for all parameters in the current model, again

favoring sparse models. The code used for fitting the models is

available from J.M.C.’s webpage (see Web Resources).

Results

Simulation Study

The aim of this simple simulation study is to explore the

performance and accuracy of the RJMH approach and, in

particular, to illustrate the differences between this

approach and a simple univariate analysis, which simply

looks for association between any pair of variables. For

simplicity, we assume that we have six binary variables,

Z1, ., Z6, and a single true underlying model. We assume

that all log-linear main effects are equal to log(0.2/(1 –

0.2)) ¼ �1.39, which gives a frequency of 0.2 within the

set of controls. We set most log-linear pairwise interactions

to be 0 (i.e., no direct association) and set six of them to be

nonzero; namely, those between Z1 and Z2 (log(2.72) ¼ 1),

Z1 and Z3, Z2 and Z6 (log(1.5)¼ 0.41), Z3 and Z4, Z3 and Z5,

and Z5 and Z6 (log(2) ¼ 0.69). These pairwise parameters

can be thought of as log of the relative risks between the

two variables involved. The corresponding model for the

mean expected count of cell i (on the log scale) can be

written as log(mi)¼�1.39z1i� 1.39z2i� 1.39z3i� 1.39z4i�
1.39z5i � 1.39z6i þ 1z1iz2i þ 10.41z1iz3i þ 0.41z2iz6i þ
0.69z3iz4i þ 0.69z3iz5i þ 0.69z5iz6i.

A graphical representation of this model is shown in

Figure 1. Those familiar with graphical models should

note that this is an interaction graph; lines between nodes

represent pairwise interactions.3

On the basis of this model, we simulated ten data sets and

ran the RJMH method upon each data set, using 30, 000 iter-

ations, dropping the first 10, 000 as burn-in iterations and
180 The American Journal of Human Genetics 84, 178–187, February
thinning by 40, leaving a sample of 1000 models. For each

data set, we then calculated the posterior probability of

inclusion for all pairwise interactions. Table 1 shows these

posterior probabilities for each pairwise interaction, within

each of the ten data sets. Those in the top six rows are those

that are within the true underlying model, i.e., true posi-

tives, and those in the bottom nine rows are those that are

not within the true model and should not be detected. Care-

ful consideration of the specificity and sensitivity of

different cutoff values suggests the use of 0.4 as an appro-

priate cutoff value for defining important parameters.Across

the ten simulated data sets, this equates to a mean specificity

of 1 and a mean sensitivity of 0.95. Using this cutoff value

of 0.4, we can see that the RJMH approach always gets

rid of untrue associations but occasionally misses out on

some true associations—namely, the (1,3) interaction in

samples 7 and 10, shown in bold font within the table,

and the (2,6) interaction in sample 5. Notice, however,

considering Table 2, that the (1,3) interaction is also missed

by the usual univariate analysis in sample 10, as is the (2,6)

interaction within sample 5. Within the univariate analysis,

we simply carried out all possible pairwise univariate anal-

yses, using simple score tests. Table 2 shows the results

from this standard analysis. Now, if we let any pair with

a p value smaller than or equal to 0.05 define a significant

finding, we see that although we pick up practically all of

the true interactions that the RJMH method picks up,

many other false associations are also detected. These p

values incorrectlydeemed significant arehighlighted within

the table with bold font, as are the two p values that were

Figure 1. Interaction graph representing the true model
underlying the simulated data for binary nodes Z1 to Z6
Lines between nodes represent true pairwise interactions between
the two nodes.
13, 2009



Table 1. Posterior Probabilities of all Pairwise Interactions for Ten Simulated Data Sets

Posterior Probability

Interaction 1 2 3 4 5 6 7 8 9 10

(1,2) 1 1 1 1 1 1 1 1 1 1

(1,3) 0.978 0.949 1 0.615 1 1 0.161 1 0.95 0.018
(2,6) 0.587 0.491 0.664 1 0.040 0.935 0.426 0.618 0.484 1

(3,4) 1 1 1 1 1 1 1 1 1 1

(3,5) 1 1 1 1 1 1 1 1 1 1

(5,6) 1 1 1 1 1 1 1 1 1 1

(1,4) 0.01 0.033 0.013 0.034 0.009 0.007 0.013 0.01 0.016 0.041

(1,5) 0.006 0.031 0.014 0.026 0.008 0.012 0.016 0.015 0.012 0.009

(1,6) 0.025 0.01 0.008 0.013 0.012 0.064 0.013 0.025 0.009 0.015

(2,3) 0.013 0.015 0.018 0.026 0.031 0.031 0.018 0.085 0.014 0.011

(2,4) 0.015 0.020 0.009 0.01 0.018 0.013 0.017 0.012 0.008 0.009

(2,5) 0.013 0.015 0.003 0.029 0.013 0.014 0.009 0.128 0.016 0.016

(3,6) 0.005 0.049 0.019 0.026 0.009 0.014 0.026 0.003 0.015 0.036

(4,5) 0.01 0.039 0.002 0.02 0.004 0.005 0.013 0.013 0.009 0.012

(4,6) 0.013 0.012 0.016 0.01 0.02 0.027 0.017 0.011 0.014 0.019

False positives and negatives are highlighted in bold type.
incorrectly deemed nonsignificant. Even if we use the unre-

alistically stringent Bonferroni correction and consider only

those p values smaller than 0.0033 (¼ 0.05/15) to be signif-

icant, we observe that many of these false interactions are

still detected. Notice, in particular, that with the univariate

method, the (3,6) and (4,5) interactions are often incorrectly

found to be significant, which makes sense if one considers

the structure of the data, which indirectly links variables 3

and 6, as well as 4 and 5 (see Figure 2). This nicely demon-

strates our point that the RJMH approach is able to distin-

guish well between direct and indirect associations, whereas

standard univariate approaches are unable to discriminate

easily between the two.

Application to Crohn Disease

The data set consists of 1019 cases and 2757 controls, from

numerous British and European sources. CD patients were
The America
recruited after ethical review and obtaining of informed

consent from Guy’s and St. Thomas’s Hospital London,

St. Mark’s Hospital London, and the Royal Victoria Infir-

mary Newcastle, as previously described by Onnie et al.8

and Precott et al.9 The diagnosis of CD was made via estab-

lished criteria of clinical, radiologic, and endoscopic anal-

ysis and from histology reports. Of the population controls,

1371 were obtained from the 1958 British birth cohort

(National Child Development Study) and the remaining

1386 were the noninflammatory-disease controls collected

at Guy’s and St. Thomas’s Hospital London (reported in

Onnie et al.10), the Royal Victoria Infirmary Newcastle,

and the European Collection of Cell Cultures (ECACC).

A summary of this data is given in Table 3.

CD has a number of subphenotypes, and these can

themselves be split into two classes: (1) location of disease

and (2) behavior of disease. CD can occur at any location
Table 2. Pairwise p Values of all Pairwise Interactions for Ten Simulated Data Sets

Pairwise p Values

Interaction 1 2 3 4 5 6 7 8 9 10

(1,2) 8.10�22 9.10�20 2.10�16 2.10�31 1.10�20 2.10�22 4.10�21 3.10�22 1.10�16 7.10�29

(1,3) 5.10�6 6.10�5 3.10�7 6.10�4 8.10�7 1.10�8 1.10�2 6.10�8 8.10�5 0.27
(2,6) 7.10�4 2.10�3 6.10�4 3.10�6 0.073 1.10�4 3.10�3 3.10�4 8.10�4 2.10�6

(3,4) 3.10�25 2.10�32 8.10�22 4.10�22 3.10�34 7.10�37 7.10�24 1.10�31 4.10�26 8.10�24

(3,5) 7.10�29 4.10�34 7.10�31 5.10�28 3.10�19 1.10�25 3.10�28 2.10�34 1.10�28 2.10�30

(5,6) 5.10�23 2.10�29 2.10�26 6.10�27 9.10�26 3.10�26 3.10�36 3.10�21 4.10�38 3.10�32

(1,4) 0.80 0.86 0.18 0.69 0.11 0.059 0.26 0.37 0.07 0.24

(1,5) 0.066 0.17 0.0046 0.035 0.14 0.028 0.52 0.035 0.59 0.47

(1,6) 0.052 0.57 0.38 0.053 0.53 0.64 0.67 0.031 0.82 0.77

(2,3) 0.24 0.56 0.0065 0.96 0.02 0.78 0.31 0.00022 0.75 0.99

(2,4) 0.87 0.23 0.54 0.80 0.22 0.90 0.29 0.6 0.74 0.94

(2,5) 0.84 0.56 0.29 0.69 0.45 0.25 0.53 0.48 0.059 0.18

(3,6) 0.0081 5.10�6 0.028 0.22 0.02 0.00097 0.11 0.00058 0.0061 0.095

(4,5) 0.00058 0.047 0.01 0.0037 0.0092 0.011 0.067 5.10�6 0.032 0.003
(4,6) 0.46 0.18 0.63 0.83 0.12 0.66 0.079 0.37 0.1 0.037

False positives and negatives are highlighted in bold type.
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along the gastric tract, including the ileum, jejenum,

colon, rectum, and anus. For the purposes of our analysis,

we will combine diseases of the ileum and jejenum and call

this location the small bowel. Therefore, we classify the

areas of interest into small bowel, colon, rectum, and

anus, and we will denote these by binary variables, which

equal 1 when an individual has disease at that place and

0 otherwise. CD can also be classed into different disease

behaviors—namely, inflammatory, internal fistulating,

perianal fistulating, and stenosing.

Gene-identification studies for CD have been highly

successful,11,12 and we focus here on three of the earliest

genes and regions to be associated with CD: NOD2 (MIM

605956), the 5q31 region (MIM 606348), and ATG16L1

Figure 2. Interaction graph represent-
ing the output of the real Crohn disease
data
Nodes represent all genotypes and all sub-
phenotypes and lines between nodes repre-
sent marginal pairwise associations with
posterior probabilities greater than 0.4.
NG, NL, NR represent the 3 NOD2 muta-
tions; 908G > R, 1007L > FS, 702R > W,
5q represents 5q31 mutation, AT the
ATG16L1 gene and Ste, Per, Fis, Inf repre-
sent the disease behaviors; stenosing,
perianal fistulating, internal fistulating
and inflammatory. Notice that any clique
in the graph does not imply the presence
of higher order interactions, since not all
log-linear models are graphical.3

Table 3. Summary of Crohn Disease Data

Minor-Allele Frequencies

Locus Controls (% Missing) Cases (% Missing)

NOD2.908G/R 0.010 (17) 0.034 (3)

NOD2.1007L/FS 0.017 (31) 0.071 (4)

NOD2.702R/W 0.050 (34) 0.101 (7)

5q31 0.423 (27) 0.482 (8)

ATG16L1 0.488 (58) 0.404 (17)

Subphenotype Frequencies

Subphenotype Controls Cases

small bowel 0 0.727

colon 0 0.566

rectum 0 0.215

anus 0 0.245

inflammatory 0 1

internal fistulating 0 0.215

perianal fistulating 0 0.244

stenotic 0 0.503

(MIM 611081). Within these three

loci, we model association with

the variants 908G/R (rs2066845),

1007L/FS (rs2066847) and 702R/

W (rs2066844) in NOD2,13–15 IGR2063 (no rs number

assigned) in the 5q31 region,16,17 and ATG16L1.300T/A

(rs2241880), all of which are strongly associated with CD

in this population.9

These eight binary subphenotype variables and five

ternary genotype variables can be jointly represented

within a 13-dimensional contingency table. This table

has (28)3(35) ¼ 62208 cells and, therefore, parameters.

Notice that, although any subphenotype can occur with

any genotype and any location of disease with any disease

behavior, those cells for which there is a location of disease

but no disease behavior, or vice-versa, are not possible.

This means that we must modify the likelihood defined

above and restrict the models allowed accordingly. The

Appendix gives details of the required modifications to

likelihood and proposal distribution.

We apply the RJMH method to this contingency table of

data and gain a sample of models drawn from the required

posterior distribution. We carried out 50, 000 iterations of

this procedure. We judged the procedure to have converged

well before the first 10, 000 iterations, which were discarded

as burn in. Posterior draws are thinned every 40 iterations,

leaving a sample of 1000 models. The posterior probability

for the inclusion of each parameter is then simply calcu-

lated as the proportion of these models that include that

parameter. Following the suggestions of Dellaportas and

Forster,7 we set the variances of the prior and proposal

normal distributions of the parameter values as t2 ¼ 1 and

s2 ¼ 2, respectively. We sampled new parameter values,

keeping the model fixed with a probability of 0.25. Because

some of the genotype data were missing, we also sampled

new missing genotypes every 50 iterations. Varying the

value of the prior precision on regression coefficients did

not materially change the results. See Appendix for details.
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Table 4. Posterior Probabilities of Direct Interactions within the Crohn Disease Data Set

Node Genotype Location Behavior Posterior Probability

(1,11) NOD2.908G/R internal fistulating 1

(5,6) ATG16L1 small bowel 1

(8,9) rectum, anus 1

(9,10) anus Inflammatory 1

(9,12) anus perianal fistulating 1

(7,8) colon, rectum 1

(7,10) colon inflammatory 1

(6,8) small bowel, rectum 1

(6,10) small bowel inflammatory 1

(6,13) small bowel stenosing 1

(10,12) inflammatory, perianal fistulating 1

(10,13) inflammatory, stenosing 1

(9,10,12) anus inflammatory, perianal fistulating 1

(3,6) NOD2.702R/W small bowel 0.96

(6,9) small bowel, anus 0.92

(10,11) inflammatory, internal fistulating 0.917

(7,13) colon Stenosing 0.87

(6,11) small bowel internal fistulating 0.87

(7,9) colon, anus 0.811

(2,6) NOD2.1007L/FS small bowel 0.785

(1,2) NOD2.908G/R, NOD2.1007L/FS 0.679

(1,13) NOD2.908G/R stenosing 0.603

(2,5) NOD2.1007L/FS, ATG16L1 0.42

(4,9) 5q31 anus 0.398

Each row refers to an interaction found to have posterior probability greater than 0.4. Column 1 contains the node numbers involved within each inter-

action, columns 2 to 4 contain the names of genotypes, locations, and behaviors involved within each interaction, and column 5 gives the posterior prob-

ability of that interaction.
Looking at the posterior probabilities of single models, we

find that the maximum posterior probability of any model

in the sample is 0.005. This is indicative of the fact that the

posterior model distribution is highly dispersed. For this

reason, it makes sense to average over all models and simply

consider the proportion of samples that include each of the

interaction parameters within the model; i.e., consider the

marginal probabilities of interaction terms. Table 4 shows

the posterior probabilities for all pairwise interactions

with a posterior probability greater than 0.4. We have drop-

ped simple main effects from this table, because these all

have a posterior probability equal to 1 and do not tell us

anything more about the underlying structure of the data.

Note that in our model, each genotype is represented as

a variable with three levels (i.e., two nonbaseline levels)

and, therefore, interactions are not defined only by the vari-

ables that interact but also by the level of the variables that

are interacting. However, our focus is not upon which levels

are interacting but simply upon which variables are inter-

acting, and therefore, we suppress the variable-level infor-

mation and report only interactions for the level that has

the highest posterior probability.

Table 4 may be more easily represented in terms of the

graph in Figure 2. As discussed above, it should be stressed,

particularly to those familiar with graphical models, that

this representation is closely related to interaction graphs

rather than to fully fledged undirected graphs, given that

each line on the graph refers to a simple pairwise interac-

tion and any subgraph need not necessarily be saturated.
The Americ
On the basis of Table 4 and Figure 2, we are able to make

some interesting observations, not only about the direct

associations that are present but also about those direct asso-

ciations that are absent. We see that the NOD2.1007L/FS

and 702R/W mutations are directly associated only to

disease in the small bowel, whereas the NOD2.908G/R

mutation seems to be directly related just to the two severe

disease behaviors; internal fistulating and stenosing. A

number of studies have previously found the association

between NOD2 variants and ileal disease to be stronger

than that between NOD2 variants and CD in general,18,19

and this result suggests that, in fact, any general relation

between NOD2 and CD may be the consequence of direct

association with small-bowel or ileal disease, as well as

internal fistulating and stenosing disease behaviors. We

find that ATG16L1 has a direct effect upon disease of the

small bowel. This agrees with the findings of Prescott

et al.,9 who found ATG16L1 to be associated with disease

in the ileum but not with disease in the colon. When

choosing a posterior probability cutoff of 0.4 to define

important interactions, we find that the SNP in the 5q31

region does not appear to be directly related with any other

variable (either genotype or subphenotype). However, we

doseea direct associationbetween this SNP and anal disease,

with a near important posterior probability of 0.398, suggest-

ing that perhaps we should not ignore this association,

particularly since this has been suggested previously by Ar-

muzzi et al.,20 who found association only between 5q31

and perianal disease. Many locations of disease are related
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to other disease locations, as may be expected, given that

disease locations are clearly highly correlated with one

another. Similarly, all noninflammatory disease behaviors

are related to inflammatory disease behavior. There is also

evidence of a three-way interaction between disease in the

anus, inflammatory disease, and perianal fistulating disease.

In terms of direct relationships between location of disease

and disease behavior, we find that disease of the small bowel

is related to all disease behaviors except perianal fistulating

disease, colonic disease is directly related to both inflamma-

tory and stenosing disease, and anal disease is directly asso-

ciated with inflammatory and perianal fistulating disease.

Discussion

Once genetic associations have been found, we wish to

further investigate the influence of the associated genes

with disease, and one important aspect of this is deter-

mining which genes are related to which subphenotypes.

Standard univariate analyses are unable to do this because

of high correlations between subphenotypes. Instead, we

suggest the use of Bayesian model-selection procedures

within the set of hierarchical log-linear models. Our simula-

tion study shows the ability of this approach to distinguish

between direct and indirect associations.

The method gives interesting insights into the probable

genetic structure of CD. The direct relationships between

disease location and disease behavior make biological sense.

In terms of direct relationships between genes and disease

subphenotypes, it appears that the effects of the NOD2

mutations may differ, such that the G908R mutation

is related to more severe disease behaviors—namely,

internal fistulating and stenosing—and the 1007L/FS

and 702R/W mutations appear to be directly related

only to disease of the small bowel. ATG16L1 is directly

associated to disease in the small bowel, as well as to

NOD2.1007L/FS, and the locus within the 5q31 region

appears to be weakly directly related to anal disease.

Although the last association is questionable, it has been

detected previously.20 However, notice that, as discussed

earlier, any direct and indirect associations have to be inter-

preted within the context of the set of variables studied.

We have chosen to use hierarchical log-linearmodels. It is,

of course, possible that the true model is not in this class; for

example, a model in which subphenotype is due to a pure

interaction between loci is nonhierarchical, because the

nearest hierarchical model would include both main effects.

If such models are common, a more general class of models

might be preferred. Inversely, restriction to a simpler class of

models would give increased power when the true model is

well approximated by a member of this simpler class. For

example, if the three NOD2 loci act multiplicatively to cause

disease, we would be likely to have more power to detect this

interaction if we restricted ourselves to multiplicative

models, rather than allowing each single locus genotype

to have a different effect on the disease. However, at present,

little is known about the relationship between multiple
184 The American Journal of Human Genetics 84, 178–187, Februar
genetic factors and phenotypically complex disease, such

as CD. We believe that hierarchical log-linear models repre-

sent a realistic and flexible set of models and provide an

attractive compromise between parsimony and the desire

to represent potential biological complexity.

Appendix

Log-Linear Models and the Poisson Likelihood

If I represents the set of all possible cells within this contin-

gency table, ni the observed count within cell i, and mi the

expected count within this cell (for i ¼ 1, ., I), we can

model the contingency table data using a Poisson likeli-

hood, which may be written in the following form:

LðZ; mÞ ¼
QI
i¼1

expð�miÞ3 m
ni

i

nk

¼ const 3
QI
i¼1

exp
�
�mi

�
3 m

ni

i

¼ const 3 exp

�PI
i¼1

ni 3 logðmiÞ �
PI
i¼1

mi

�
:

It is well known that the Poisson likelihood for cell

counts gives equivalent results to the multinomial likeli-

hood for cell probabilities but omits the need to directly

normalize across all cells and is therefore a more practical

model to use.1 The model defined above is parameterized

by the set of mI, and therefore, there is one parameter for

each cell; hence, this model represents the most saturated

model possible for the data, which cannot inform us about

the underlying structure.

A log-linear model, however, allows us to define a model

for each expected cell count (mi), and this model can then

be used for information about the underlying structure. A

log-linear model defines each cell mean in terms of a sum

of ‘‘interaction’’ parameters present within that cell. Each

‘‘interaction’’ parameter corresponds to a subset of the

nonbaseline variable levels, and there are an equal number

of these parameters as there are cells in the contingency

table. We let j index the set of all possible parameters and

let bj represent interaction parameter j, for j ¼ 1, ., J

(where J ¼ I in the case of the saturated model). We also

represent cell i by the vector zi ¼ (zi1, ., ziP)) and let the

function bj(.) be equal to bj if cell i includes parameter j

and zero otherwise. The model for the log of the expected

cell mean can then be written as:

logðmiÞ ¼
XJ

j¼1

bj

�
zi

�
:

Plugging this into the Poisson likelihood, we can re-

express our likelihood as:

LðZ; mÞ ¼ const 3 exp

 XI

i¼1

ni 3
XJ

j¼1

bj

�
zi

�
�
XI

i¼1

exp

3

 XJ

j¼1

bj

�
zi

�!!
:
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This new parameterization allows us to make use of the

flexibility of these log-linear models by dropping parame-

ters from the saturated model, so that we can find the

most parsimonious models that fit the data with the fewest

degrees of complexity. This equates to our taking a subset

m of 1, ., J to define our model and summing across all

j in m rather than across all parameters 1, ., J. Note that

there exists a correspondence between the parameters of

a log-linear model and those of a (perhaps more familiar)

logistic-regression model, such that the pairwise interac-

tion between, say, Z1 and Z2 is equivalent to the main-

effect parameter of the logistic regression of either Z1 on

Z2 or Z2 on Z1. This equivalence extends to interactions

of all sizes, so that a log-linear three-way interaction

parameter is equivalent to a logistic pairwise interaction

between two of the variables, in which the third variable

is the outcome of the regression, and so on.

Because we restrict ourselves to the set of hierarchical

models, all models may be defined unambiguously by the

maximal set of parameters that are not subparameters of

any other parameters contained in the model. These

maximal parameters are known as the generators of the

model, and we shall define these by G. Each hierarchical

model also has a set of dual generators. These are the set

of parameters that are ‘‘next up’’ from the generators. In

other words, these are the set of parameters that are not

contained in the model, but all subparameters of these

parameters are included in the model. We will denote

this set by D. We have decided to restrict attention to the

subclass of hierarchical log-linear models, because not

only is the model space smaller but the steps of the

model-search approach that are proposed make more sense

in this scenario and are more likely to be accepted. Both

the generators and dual generators are important when

this approach is used.

Reversible-Jump Metropolis-Hastings: Proposal

Distributions

We have decided to consider only hierarchical models.

Following the method of Dellaportas and Forster,7 we

allow three possible proposal steps. The first step is to

drop a parameter from the model. Because we are interested

only in hierarchical models, the only parameters that we

can legally drop are the set known as the generators of

the model, because the resulting model would otherwise

contain parameters for which not all subparameters belong

to the model. Therefore, so long as the set of generators is

not simply the set containing a only, we will randomly

propose one of the generators to drop from the model.

The second step is to add a parameter to the model. Again,

because we are interested only in hierarchical models, the

only terms that we can legally add are those within a partic-

ular set known as the dual generators of the model. So long

as this model is nonempty, we randomly propose one of

the dual generators to add to the current model. Because

we are adding a term, we also need to propose a value for

this parameter. We will simply sample this value from
The Americ
a normal distribution with zero mean and variance s2,

independent of both the model and the other parameter

values. The final proposal type is known as the null

move, because the model remains unchanged and we

simply update the parameter values of the current model.

Theoretically, this step is unnecessary for guaranteeing

convergence, but it allows us to move around the space

more quickly and effectively. Within this step, we simply

update all parameters separately, in a random order, using

a simple normal proposal with mean equal to the current

value of the parameter and variance equal to s2. Note

that ideally, we would use some form of Gibbs sampling

approach, as did Dellaportas and Forster,7 which means

that we would update each parameter every time we carry

out the null step. However, this can be impractically slow

and time consuming for larger problems. Alternatively,

we repeat the random sequence of updates a given number

of times, T, in a single ‘‘null’’ step. Within the applications

of this paper, we choose T ¼ 10. When the null step is not

sampled, the drop step and the add step are proposed with

equal probability, so long as both are possible; otherwise,

the only possible step is selected automatically.

Prior Distributions

The joint prior distribution of m and b can be written as

P(m, b) ¼ P(m)3P(bjm).

As did Dellaportas and Forster,7 we chose independent

normal priors for each parameter included in the model,

each with zero mean and precision 1/t2¼ 0.001. We found

that results were not very sensitive to variance in the prior

precision. As an uninformative prior on the model, they

chose to make all models equally likely. Although this prior

at first appears uninformative, it is in fact informative on

the number of terms in the model, because (for general

log-linear models) it has its maximum at jIj2 parameters,

which is very large even for problems of moderate size.

We expect that in reality, the models with main effects

and perhaps a few pairwise interactions would be the

most likely models and that higher-order interactions

would become more and more unlikely the higher the

order becomes. We therefore wish to choose a prior that

reflects this information. A possible prior can be defined

by assigning all sizes of interaction (from 1:P) with a prob-

ability so that p(s) defines the probability of a parameter of

size equal to s, given that all subparameters are in the

model. If we let sa define the size and order of interaction

a (i.e., the number of variables included in a), then the

prior for a particular model can be formed as the product

of p(sa) across all parameters within the model, such that

model m has a prior probability of 3

PðmÞ ¼ const 3
Y
a˛m

pðsaÞ,

in which we choose pðsaÞfe�sa and const is the normalizing

constant that ensures that the sum across all models is

equal to 1. Note that this need not be calculated, because

it falls out of the Metropolis-Hastings ratio.
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Missing-Data Update

Although we assume that there are no missing data and no

misclassification of the disease phenotypes, we allow for

missing genotype data. Therefore, we need to treat this

missing data as an unobserved random variable that can

be updated as part of the RJMH algorithm. For simplicity,

we fix the algorithm to update the missing data every

50 iterations. At each of these updates, the proposal sepa-

rately updates each individual, such that new values for

all missing loci in that individual are independently

sampled from 0, 1, and 2 with equal probability (1/3).

The Metropolis-Hastings ratio for accepting or rejecting

the proposed data set for this individual is then based

just upon the likelihood ratio.

Dealing with Structural Zeros

In our application, in which we have multiple classifica-

tion classes, there is a small set of cells that are not

possible. In usual contingency-table terms, these are

referred to as ‘‘structural zeros’’ (distinguished from

sampling zeros, in which a cell is possible but observed

to have a zero count). In our specific case, these structural

zeros occur because an individual with CD at a particular

location must also have at least one behavior of CD and

vice-versa. So it is impossible for an individual with no

location of disease to have a disease behavior or an indi-

vidual with no disease behavior to have a location of

disease. In our case, this means that there will be

(35)3((24 � 1) þ (24 � 1)) ¼ 7290 contingency-table cells

that are structural zeros. This has two implications for

our RJMH method. The first is simply the need for a small

adjustment to the likelihood, so as to adjust the set of all

possible parameters, I, so that it no longer includes these

structural zeros; therefore, within the likelihood we only

sum the expected mean cell frequencies over those cells

that are not structural zeros. The second adjustment is

slightly more complicated. Just as sampling zeros in the

frequentist framework can cause problems with fitting

some parameters, structural zeros can cause problems

with fitting some parameters in the Bayesian framework.

The problem is simply that the maximum number of

parameters that we can fit in our model is equal to the

number of possible cells in the table and when some cells

are not possible we find that we can no longer fit some of

the parameters. Therefore, we need to restrict the set of all

possible parameters to a set that is fittable given the struc-

tural zeros. If there are Q cells that are structural zeros, then

we need to select Q parameters that we can drop, so that

the rest of the parameters are fittable. This group of

‘‘illegal’’ parameters contains all parameters that contain

the interaction between the highest level of all of the

‘‘behavior’’ variables and the highest level of one or more

‘‘location’’ variables, as well as all those parameters that

contain the interaction between the highest level of all

of the ‘‘location’’ variables and the highest level of one

or more ‘‘behavior’’ variables. Note that this second point

is really a problem only for very small numbers of variables
186 The American Journal of Human Genetics 84, 178–187, February
and when there is no weighting of the prior against highly

parameterized models. In the application that we consider,

this point becomes academic.
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The URLs for data presented herein are as follows:

British National Child Development Study 1958 birth cohort,

http://www.cls.ioe.ac.uk

European Collection of Cell Cultures (ECACC), http://www.ecacc.
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J.M.C.’s webpage, http://homepages.lshtm.ac.uk/encdjcha/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/
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